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Summary. The following is a summary of the research of F. J. Narcowich and J. D.
Ward supported by the Air Force during the period 6-92 through 8-95. Results dealing
with center placement and stability for neural networks that employ radial basis func-
tions (RBFs) were obtained, and led to convergent RBF identification algorithms with
persistently excited regressor vector. A class of RBF-based methods that are grid-free
and dimension-blind and that allow one to solve virtually any surface-fitting problem in-
volving derivative information at scattered sites was discovered. For situations where the
underlying geometries are noneuclidean—spheres or tori, for example—, basis functions
analogous to RBFs were developed; these provide tools to fit not only scattered data, but
also scattered derivative-data. A class of nonstationary, orthogonal, well-localized periodic
scaling functions and wavelets were constructed out of these bases, so that an integrated
approach to handling both the representation and analysis of periodic data, even when the
data are scattered or noisy, is provided.




I. Review of Research

The research described below was carried out during the period 1 June 1992 to the
present, the early starting date stemming from a ninety-day pre-award agreement with
AFOSR. The work itself is communicated in the papers and informal technical reports
listed in §II. (Publications are denoted by ‘P’, reports by ‘R’, and supplementary references
by ‘S’.) Our research fits into four broad categories:

1. Generalized interpolation with radial basis functions (RBFs), least
squares approximation and error estimates. [P1, P7, P8, P11-P13,
R3, R2]

2. Periodic, spherical, and manifold analogues of radial basis functions.
[P9, P10, R4]

3. Wavelets. [P2, P3, P5, P6, P14]

4. Shape preservation. [P4]

1. Generalized interpolation, least squares, error estimates. The neural networks
constructed by Simmers and Southall [S1, S4] were based on linear combinations of Gaus-
sians with variable centers. Our research dealt with the placement of these centers and
the stability of the interpolation and least squares matrices associated with these radial
basis functions. In [P1], we investigated the [, bounds of the inverse of the interpolation
matrices. Under the appropriate assumptions on the RBF used, we established that the
interpolation matrices on I, enjoyed the same stability properties as they did on 3. In
[P11] and [P12], we obtained estimates on spectral condition numbers for scattered-data
interpolation matrices associated with a certain class of RBFs having order 0; the class
includes the Gaussians. Our estimates lead to a surprising set of necessary and sufficient
conditions for such condition numbers to be independent of the number of data sites. The
results from our paper [P12] were used by Simmers, Southall, and O’Donnell [S4] to give
a new approach to the selection of certain parameters central to their neural beamforming
algorithm.

The neural beamforming algorithm mentioned above contained a novel method for
representing angles. In this method, angles in an interval [a, b] are represented as averages
of endpoints of subintervals or “bins” formed from [a,b]. In private communications,
Simmers and Southall remarked that the method enhanced the performance of the neural
beamforming algorithm. In [R3], we give an analysis of the method, and provide some
expanation for the methods effectiveness.

In [P7] and [P8], identification algorithms whose convergence and rate of convergence
hinged on the regressor vector being persistently excited were discussed. We showed that
if the regressor vector is constructed out of radial basis function approximants, it will be
persisitently excited, provided a kind of “ergodic” condition is satisfied. Our results were
closely connected with obtaining estimates for least squares stability.

One of the new aspects of RBFs uncovered in our work is the ability of RBFs to
handle scattered data involving derivative information. In paper [P13], we investigated
a broad class of interpolation problems, for both scalar and vector-valued multivariate
functions subject to linear side-conditions, such as being divergence free, where the data
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are generated via integration against compactly supported distributions. We discovered
a class of RBF-based methods that are grid-free and dimension-blind, and that allow one
to solve virtually any surface-fitting problem involving derivative information at scattered
sites in R®. One can even create divergence-free vector fields to fit data, including flux
data, from magnetic fields or velocity fields for incompressible fluids. In addition, we
obtained norm estimates for inverses of interpolation matrices that arise in a class of
multivariate Hermite interpolation problems. In the informal report [R2], we discussed
how such interpolation problems might fit into the neural beamforming algorithm.

2. Periodic, spherical, and manifold analogues of radial functions. The phases
in a phased array antenna are angles. In particular, in the neural beamforming algorithm
in [S1, S4], the data set comprises phase differences from eight antennas, and thus requires
seven periodic coordinates for its description. In modern mathematical parlance, the set
of all possible data is a seven dimensional torus. One way of treating this set is to regard
it as imbedded in a fourteen dimensional unit cube in Euclidean space, and use standard
RBF methods to fit a surface to the data. This was the method originally employed in the
neural beamforming algorithm mentioned above. Unfortunately, this creates an edge effect
not really present in the data set; in addition, the method requires a requires a certain
amount of preprocessing before data can be fed into the neural beamforming algorithm.

The situation described above is a special case of a more general situation in which the
data set resides in a noneuclidean manifold. In [P9, P10, R4], we developed tools similar
to RBFs to fit not only scattered data, but also scattered derivative-data for situations
where the underlying geometries are noneuclidean. Specifically, we introduced a class of
positive definite kernels defined on a closed, compact, Riemannian manifold. (The m-
sphere and m-torus belong to the class of such manifolds.) These kernels behave like
RBFs in that they provide a grid-free method for solving uniquely a generalized version
of the Hermite interpolation problem which includes interpolation for data generated by
derivatives, fluxes or any other quantity one can obtain by integrating a function against
a compactly supported distribution. In the cases of the sphere and the torus, the kernels
%(p,q) have simple forms. For the sphere, x(p,q) = K(p - q); these are called spherical
basis functions (SBFs), and were introduced by Schoenberg [S3]. For the torus, k(p,q) =
K(p— q), and we call K a periodic basis function (PBFs).

Using PBFs, Simmers, Southall, and their co-workers were able to simultaneously
reduce pre-processing and remove the edge effect in their neural beamforming algoritm.
PBFs and SBFs can also be used to create wavelets for the torus and the sphere. These
we will describe in the next section.

3. Wavelets. Radial basis functions are well known for their ability to efficiently re-
construct functions from information at scattered-data sites, and wavelets for their ability
to analyze data that arises from uniform sampling of a function. Recently, a merging of
these two tools has been made. In [P2], for the case of a single real variable, we have
constructed non-stationary, orthonormal, analytic wavelets generated by RBFs. These
wavelets have several attractive features. Projecting a function f onto a suitable sampling
space is easily done, and the associated projections approximate sufficiently smooth func-
tions exponentially fast. Also, as in the stationary case, these orthogonal wavelets satisfy
the Paley-Littlewood identity, so that perfect reconstruction of wavelet decomposition is
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achieved. Moreover, time frequency localization for these wavelets can be obtained and
the localization is quite satisfactory in many cases.

The objective of paper [P3] was to provide a general framework for the construction
of wavelets generated by translates of a given tempered distribution h, where the trans-
lates are defined by a sequence of arbitrarily spaced points. In contrast with the existing
literature, where specific generating functions are considered, the approach given in [P3] is
operator-theoretic in nature and relies only on certain properties of A (e.g. the order of the
singularity of the Fourier transform of h at the origin), but not on a detailed knowledge of
the distribution itself. This approach provides not only a unifying thread for the known
results, but also a very powerful tool for analyzing almost any mathematical representation
of scattered discrete (univariate) data. For example, our methods yield the first results on
stability of certain wavelet bases associated with scattered data on the line under the sole
assumption that the scattered data are taken on sample sites with bounded global mesh
ratio. An important result of this study is an exact identification of the L?(R)-subspaces
generated by linear combinations of shifts of certain unbounded radial basis functions.

In [P5), the I spectral radius of any multivariate subdivision operator S of the form

(S/\)i = Z a,;_Mj)\j,'i A
jezs

where a = {a; : I € Z*} is a finitely supported mask and M is a s X s integer dilation matrix
is derived. Moreover, this radius is shown to be realizeable as the largest eigenvalue (in
magnitude) of an associated operator defined on a finite dimensional space whose dimension
depends only on the support of the mask of S and on the ambient space R®. In [P6], we
study the same problem for the integral operator

@) = [

. a(z — My)f(y)dy, =€ R’

In contrast to the subdivision operator we showed that the spectral radius of T on any
LP(R?) can be computed as the spectral radius of an associated compact operator. In 6, we
investigated a class of non-stationary wavelets generated by certain radial basis functions.
For these wavelet spaces, the associated multiresolution spaces approximate sufficiently
smooth functions exponentially fast. The time frequency localization can be obtained and
the localization was shown to be satisfactory in many cases.

In [P14], we investigated a class of nonstationary, orthogonal, periodic scaling func-
tions and wavelets generated by continuously differentiable periodic functions with positive
Fourier coefficients; these are just PBFs for the circle. The scaling functions and wavelets
presented there have a number of attractive features. The decomposition and reconstruc-
tion coefficients involve only a few terms and they be computed in terms of the FFT. To
discuss the localization properites, we adapted an uncertainty relation for the circle to the
case at hand, and we gave a class of wavelets that are well localized and can be as smooth
as one desires. The idea is that using related bases to do both representation and analysis
will provide an integrated approach to handling periodic data, even when the data are
scattered or noisy. Another possible use for these wavelets is detection of damage to a
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neural network. Often a network will compensate for damage, and it is sometimes difficult
to know when and where such damage has occurred. In the case of neural beamforming,
one can use the PBF wavelets, which are naturally periodic, to continuously monitor the
network to detect derivative discontinuities that would arise from damage to the network.

In addition to work on periodic wavelets, we have currently made progress in con-
structing wavelets capable of handling scattered data on the sphere. Preliminary results
are reported in [P15].

4. Constrained approximation. The results in [P4] relate to some work of R. Shore
at the Rome labs at Hanscom AFB. This paper studies best approximation in a Hilbert
space X from a subset K which is the intersection of a closed convex cone C and a closed
linear variety, with special emphasis on applications to the n-convex functions. Explicit
formulas for computing the best approximations in this situation are given.
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II1. Personnel

In addition to the co-PIs F. J. Narcowich and J. D. Ward, here at Texas A&M we
have interacted extensively with C. K. Chui and N. Sivakumar. Professor Chui is an inter-
nationally known member of the approximation theory community. Professor Sivakumar
is a junior faculty member whose interests include RBFs. There are no graduate students
currently working on the project.

IV. Activities

Laboratory Contacts. We have had consistent contact with Major (Dr.) Jeffery Sim-
mers and Dr. Hugh Southall, who are at Hanscomb AFB in Massachusetts. During the
period of this report, Major Simmers and Dr. Southall visited us here at Texas A&M

University three times, in in mid-August 1992, in December 1993 and in March 1994. We -

paid vists to the laboratory at Hanscom AFB in July 1993, July 1994, and again in July
1995. We have exchanged numerous messages via both surface and electronic mail, and
we have prepared several informal reports for them. Finally, we have also had interactions
with Dr. Robert Shore, who is also at Hanscom AFB. See §1.4 above.

Other activities. Professor Narcowich gave talks related to the grant as follows. In June
1992, he spoke at the Rutgers meeting of IMACS, and in Sepetember 1992, at the Princton
PI retreat. In March and October of 1993, he gave talks at the Texas A&M University
Center for Approximation Theory Annual Symposium and at the 866th Meeting of the
AMS at College Station, TX, respectively. In April 1994, he again spoke at the Annual
Symposium of the Center for Approximation Theory, Texas A & M University, College
Station, TX. In July 1994, he gave a talk at the Fourteenth IMACS World Congress held
at Georgia Tech in Atlanta, GA. In October 1994, he and J. D. Ward, gave an invited talk
at the special session on Wavelet Galerkin Methods in Computational Mechanics at Society
of Engineering Science 31°* Annual Technical Meeting held at Texas A&M University. In
December 1994, he, A. J. Kurdila, and J. D. Ward contributed a talk to the 337¢ IEEE
Conference on Decision and Control held at Lake Buena Vista, Florida. In January 1995,
he gave three talks, joint with J. D. Ward and P. W Smith, at the International Conference
on Approximation Theory held in College Station, TX.

In addition to the five joint talks mentioned above, Professor J. D. Ward has presented
a number of talks on topics related to RBFs and RBF networks. In December 1992, he
gave a talk at the IBM Watson Research Center in Yorktown Height. In January 1993,
he visited Duisburg, Germany on NATO funds. In June 1993, he attended the conference
on Curves and Surfaces held at Chamonix, France. He gave a talk at the session on
approximation theory held at Oberwolfach in August 1993. In January 1994, he gave a
talk at the winter AMS special session on wavelets held at Cincinatti, OH. In June 1994,
he spoke at the special session on multivariate approximation theory of the Canadian
Mathematical Society held at University of Alberta. In August 1994, he gave a talk at the
summer meeting on mathematical programming held at the University of Michigan-Ann.
Arbor. In addition, in March 1994 he went to Oberwolfach to visit colleagues in Germany.
In October 1994, he again visited Duisburg, Germany on NATO funds. Finally, in May
1995, he visited Pennsylvania State University at University Park, PA on funds from Texas
A& M.




